Smoke Studies using a Cleanroom fogger, smoke generator, DI water fogger to visualize airflow and turbulence

Applied Physics, Inc.


Applied Physics, Inc.

Call Us: 1-720-635-3931

Wafer Size Standards

Clean Room Foggers

Ultrapure Foggers

PSL Spheres, Silica Particles

Aerosol Product Information

Cleanroom fogger, Smoke Generator, DI Water Fogger, Portable Fogger and CO2 Fogger

The Cleanroom Fogger is used in smoke studies for airflow visualization using Distilled or WFI Water to produce a pure fog to visually describer airflow, patterns and turbulence in Semiconductor clean rooms for contamination control. It is used in Pharmaceutical suites in support of USP 797 Pharmaceutical In-Situ Airflow Analysis.

Cleanroom Fogger, DI Water producing 9cfm of Pure Fog - Request a Quote

The Cleanroom Fogger, CRF-2, is used in smoke studies and often referred to as a smoke generator, which is used to visualize airflow patterns and turbulence in clean rooms and pharmaceutical ISO 3, ISO 5, ISO 7 and ISO 9 suites. The CRF-2 will provide instant on/off operation as an airflow visualizer to monitor patterns and turbulence in controlled clean room areas.

Cleanroom Fogger, CRF-2 Features - Click here for MP4 Cleanroom Fogger Video

Cleanroom Fogger
  • 9 transducers converting DI Water or WFI water directly to 9cfm of of pure fog for 60 minutes
  • Quick refill of Di Water or WFI water for continuous fog use, Easy to Fill Water Port and Water Level Indicator on left side of fogger
  • Cleanroom Fogger Handle for easy carry convenience
  • Polypropylene white enclosure provides a clean and particulate free enclosure, no finger prints, less weight
  • Transducer life is 5000 hours
  • Fog Curtain Wand, optional, plugs into end of Fog Hose to create a wide fog wall, while reducing the fog velocity and maintain a constant 9cfm of fog output
  • 2" Diameter (5.08 cm) hose that telescopes from 28 inches to 82 inches
  • Fog Tube and 120VAC Power Supply (or 220VAC) is included, 15 foot power cable
  • Easy to use, quick operation set up, instant On/Off fogging operation
  • Rolling Carry Case, optional, for carry and storage of Clean room Fogger
  • Remote Power Cable with ON/OFF switch to operate fogger behind closed walls or in a barrier isolator
  • Paperless operation - instructions and applications on the right side of the cleanroom fogger
cleanroom Fogger and fog curtain wand

Cleanroom Fogger, Pharmaceutical Suites, Semiconductor Clean Rooms

  • Air flow balance
  • Leak detection of exhaust ducts
  • Barrier Isolator and laminar flow tests
  • Wet bench exhaust tests
  • Personal safety exhaust tests
  • Chemical process equipment, exhaust ventilation tests
  • Pressure balancing between rooms and spaces
  • Visualization of airflow patterns and turbulence
cleanroom fogger
Carrying Case   OPTIONAL Carrying Case
Carrying Case 2

Specifications, Clean Room Fogger- Request a Quote

  CRF-2 Clean Room Fogger
FOG Duration up to 60 minutes
FOG Volume 9 cubic feet per minute
Total FOG Volume 540 cubic feet of pure fog over 60 minute operation cycle
Visible Fog Distances 8-9 feet
FOG Type Pure Fog using DI Water WFI Water
Class of Clean Room Class 1 to 10,000
Type of Room Clean Room, Sterile Room, ISO Suite, Medical Room
Water capacity 3.78 liters
Useable Water capacity 3.5 Liters

Liquid Weight 3.64 kg (8 lb.) Water
Power Requirements 115 VAC, 60 Hz, 14A
Optional Power 230 VAC, 50 Hz, 8A
Metric Dimensions, (H x W x D) 25.4cm x 22.9cm x 27.9cm
US Dimensions, (H x W x D) 10 inches x 9 inches x 11 inches
Full Weight 7.7 kg (17LBs.)


The CleanRoom Fogger is used in smoke studies as a smoke generator. It is a significant improvement over other Di Water Foggers by providing the highest volume output of all DI Water foggers sold today, reducing the weight by using a polypropylene enclosure rather then a costly SS enclosure. And Operation instructions are located on the right panel, so there is no paper manuals used in the pharmaceutical ISO 9 suites, laboratory or clean room.

Theory of Operation: Ultrasonic cavitation and DI water or Pharmaceutical WFI Water. Use of any other liquids or chemicals will void the warranty.

The transducer life is ~5,000 hours. To protect the transducers from damage there is a level sensor that will interrupt the input voltage to the transducer module, should the water level drop to a low level. This ensures long life and reliability.


  1. The fog generated by this device contains microscopic droplets of DI water. AVOID USING IN IMMEDIATE VICINITY OF ELECTRICAL APPLIANCES, WATER SENSITIVE PRODUCTS AND EQUIPMENT.
  2. The fan will operate with no water in the reservoir with the power switch in the ON position. This will aid in drying when the chamber is drained.
  3. To increase drain plug tension, remove the plug, rotate clockwise (CW) the front latch while holding the rear metal disk.
  4. The CRF-2 is intended to be used on a flat surface, on its feet. Tipping the fogger with water in the reservoir will damage the fogger. DO NOT OVERFILL OR TIP THE FOGGER.

Portable Fogger, DI Water Fogger, Battery Operated, 4cfm - Request a Quote

The patented, hand-held Portable Fogger was developed for users that require totally portable visible vapor generation. Many foggers sold today use phrases such as portable and ultrapure fog, but small size alone does not make a tool totally portable or ultrapure. This battery powered, hand-held, on-demand, ultrasonic Di Water fogger meets the criteria as a portable fogger.

Applicationsportable fog gun foggerportable FogGun fogger

  • Cleanroom laminar flow testing
  • Barrier Isolator air flow testing
  • Wet bench exhaust optimization
  • Process equipment ventilation testing
  • Personal safety exhaust verification
  • Pressure balancing between rooms and spaces

Portable CleanRoom Fogger, Fog-Gun™ Smoke Generator Features

  • Portable and Lightweight
  • No external cords required
  • Ergonomic
  • 6 ft. hose for remote fogging
  • Transducer life: 10,000 hours
  • Built-in level sensor to protect transducers
  • Built-in tilt sensor to protect circuitry
  • Two speed fan for On Demand Fog
  • Trigger bypass switch for remote fog use
  • Belt clip for easy transportation
  • Patented Labyrinth design to prevent water leakagesmoke generator


  1. The fog generated by this device contains microscopic droplets of DI water. AVOID USING IN


Dimensions 10” x 7” x 11.5” (254 x 178 x 292)
(including water)
5.2 lbs. (2.36 kg)
Liquid capacity 300ml
Fog life, Fog Distance, Fog Volume 30-40 minutes, 3 feet distance (0.9m), 3cfm fog volume
Battery life ~40 minutes
Battery Charging Time 6-8 hours

Which Smoke Generator Is Best For Smoke studies?

Model 2001, UltraPure Fogger, 15cfm
  • When fog purity and long, visible airflow patterns are needed
  • When fogging larger clean rooms, ceiling to floor areas
  • When fog exit velocity must not create turbulence
  • When 40 minutes of high purity fog duration is needed
  • When fog visibility of 10-15 feet distance is required
  • When fogging Class 1 to Class 10,000 semiconductor and pharmaceutical ISO suites

* Use Hand Gloves and Face Shield when filling LN2
Use 16M ohm DI water or WFI Pharmaceutical Water
Clean Room Fogger, Model CRF-2 = 8-9cfm, Model CRF = 6-7cfm;
  • When budget is lower, basic Fogger OK, minimal output turbulence
  • When 60 minutes of fog operation is desired with quick turnaround
  • When fog visibility of 7-8 feet (Model CRF-2) or 6-7 feet (Model CRF) distance is acceptable
  • When fogging gray areas behind the cleanroom
  • When fogging ≥ Class 10 or above in semiconductor cleanrooms or pharmaceutical ISO suites

CO2 Fogger, Vapor DiH2O Fogger, 3cfm
  • When Fogging Hazardous areas, No Electrical Permitted
  • When fog visibility for 3-4 feet distance is acceptable
  • When 15 minutes of fog duration is useful
  • When fogging small areas
  • Class 10 or above in semiconductor fabs or pharmaceutical ISO suites
  • When fogging work benches

Portable Fogger, DiH2O Fogger, 3cfm
  • When fogger PORTABILITY is a must
  • When fog visibility for 3-4 feet distance is acceptable
  • When 25 minutes of fog duration is useful with quick turnaround
  • When fogging ≥ Class 10 and above in semiconductor fabs and pharmaceutical ISO suotess
  • When fogging "hard to get at" areas
16 Meg ohm DI water is standard, but 64 Meg ohm can be used as well
Do not permit DI Water to go stagnant in the chamber
** Use gloves when handling CO2 ice

Fogger Technology

The three types of foggers manufactured for use in the semiconductor and pharmaceutical industry are described below.

Ultrapure Fogger, Nitrogen Fog Generator: This type of liquid nitrogen fogger provides the highest volume, density and purity of fog. Purity is created by bringing the water to a boil, creating a vapor, while simultaneously using gravity to remove the residual mass from the vapor. This process removes any bacterial agents and residual particulate matter from the vapor. The pure vapor is then passed over a liquid nitrogen bath, which naturally boils at room temperature. The water molecules quickly attach to the nitrogen molecules (quenching process), creating a nominal 3um fog droplet. The volume of water and nitrogen molecules that combine is extremely high in quantity, creating a dense, high volume, ultrapure fog output with exit temperatures of about 80 degrees F with an exit pressure of less than 0.5 lbs, so as not to disturb the surrounding airflow. The fog is ultrapure leaving minimal, if any, trace particles behind. It evaporates to its gaseous hydrogen, oxygen and nitrogen components, which are natural to the Cleanroom environment. The high density of the fog increases the duration and travel distance of the fog. This fogger can be used in a Class 1 - 10,000 Cleanroom environment.

Clean Room Fogger, DI Water Fogger: This type of fogger has less fog density (less capability to visualize airflow) than the UltraPure Fogger described above, but more density than the CO2 fogger described below. Model CRF-2 produces the highest volume of fog of all DI Water Foggers at 8-9 cfm for 60 minutes, or 540 cf of fog over a 60 minute period. Model CRF produces 6-7 cfm for 60 minutes, or 420 cf of fog over a 60 minute period The DI water fog is generated by atomizing DI water into water droplets, which are nominally 3-10um in size. The water droplets can contain residual particulate matter remaining in the DI water, but this would be very trace amounts. If the facility manager operates a class 10 to Class 10000 Clean room, the use of a DI Water Fogger poses no problem. However, Cleanroom Engineers who manage facilities operating at Class 1 to Class 10 performance may desire to use an M2001 UltraPure Fogger. Although some DI Water foggers are described as ultrapure, unless the DI water is vaporized to remove bacterial agents and residual particulate matter, the fog is not ultrapure. The 3-5lb output pressure of a DI water fogger can add disturbance to the airflow. Minimize this by directing the DI Water Fog with the direction of airflow. The temperature output is typically less than the surrounding room temperature, thus a fog generated from the atomized water droplets will sink momentarily in a typical 70 degree room temperature.

CO2 Fogger: This type of smoke generator is designed for low volume, non-process critical applications such as bench airflow testing. The fog is created using CO2 ice as the fogging agent. The 3-5lb output pressure of a CO2 fogger also distorts the airflow patterns, thus adding to the turbulence. The output starts at about 3cfm and slowly decreases to 0 CFM in about 10 - 12 minutes.

Smoke Sticks

Smoke Sticks are used in some Pharmaceutical Clean Rooms around the world. Below is a discussion on the use of smoke sticks used to visualize airflow and turbulence?

A smoke stick is used to visualize airflow patterns and turbulence, but smoke sticks are filled with particulates and chemicals. Smoke is created using a chemical reaction; thus the smoke is SPUTTERING (sputter) or popping out of the smoke stick in a non-consistent pattern with velocity, but little volume. It is a smoke, compared to a visible, pure water based fog, thus it is a contaminating smoke. The smoke stick generates an inconsistent flow or pattern of smoke. But it is low cost, which is why some managers allow use of smoke sticks in their Pharmaceutical clean rooms.

Compare a smoke stick to a Clean Room Di Water fogger or an UltraPure fogger that produces a constant volume of fog with a consistent fog output and pure fog. Di Water foggers produce a consistent flow of visible water vapor, which enters the airflow to visualize the airflow patterns and turbulence, then begins to evaporate, returning back to the hydrogen, oxygen and nitrogen components that we breathe. No particulate contamination, no chemical contamination. Water based foggers produce a constant volume of fog at a constant rate, which provides consistent visualization of airflow patterns and turbulence. The Smoke Stick has to be waved around to see what kind of airflow pattern there is, while a Di Water fogger is simply placed in position and produces a flow of fog that can be directed 360 degrees to easily describe the airflow patterns and turbulence. In addition, tubes are now available to create "fog curtains", or a wall of fog, which smoke sticks can not produce.

How many smoke sticks are used per smoke cycle? How much labor is used to clean up after a smoke stick and to clean all the walls where the smoke stick was used. Where did the chemical particulates and particles go to in the process area? These are valuable questions for a pharma process or facility manager. Do the contaminating particulates and chemicals get into the drug process?

How much labor is used to cleanup after a smoke stick fog and if the cleanup did not get every chemical particle, then some smoke chemical material is added to the Pharma process or trapped in a filter somewhere, until it escapes into the Pharma process. That is a quality control issue for that company using smoke sticks.

The labor cost may be the reason that some facility managers use smoke sticks, but are the chemical and particulate effects to the pharma process being analyzed? Non-contaminating fog does not emit particulates, requires less labor and does not contribute any unwanted chemicals to the Pharma process. A Di Water Fogger provides these advantages in fog volume, fog consistency and fog purity, which easily outweighs the low cost of smoke sticks, the high cost of labor for cleanup and the detrimental affects to quality control!

Smoke Sticks - quality side of the drug product: The smoke chemicals are not of the same chemistry as the drug product, thus smoke chemicals and particulates could migrate into the drug process. There is no guarantee the cleaning process removed all the unwanted particulates and chemicals, from for example, a glove box or isolation box. The chemicals and particulates eventually migrate to the air filter system, which is not 100% effective. If this is the case, the quality and purity of the drug process is affected. Drug quality is the basis of product credibility, which is a valuable asset in customer relations.

Smoke Sticks - labor side of the drug product: The smoke is generated by a chemical reaction, which causes the smoke to sputter into the environment. The smoke is inconsistent in volume, thus the smoke stick is unpredictable for airflow visualization. The chemicals migrate to equipment and walls, which then must be cleaned, and requires an added labor cost. The use of Smoke sticks generates an inefficient smoke, not a consistent fog.

A Di Water Fogger produces a water (H2O) droplet that evaporates back into hydrogen and oxygen, the air we breathe. No clean up is required, at all. No additional time delays and clean up labor is not required. The fog is consistent in volume and constant in output to describe the airflow patterns and turbulence. These are equipment, quality and application concerns to consider when the need for airflow visualization is considered.