Ultrapure Fogger, nitrogen fog generator, smoke generator, liquid nitrogen fogger, visualize airflow, airflow turbulence

Applied Physics, Inc.

REQUEST A QUOTE

PSL Wafer Standards

Calibration Wafer Standards

Contamination Wafer Standards

Particle Wafer Standards

Clean Room Foggers

Ultrapure Foggers

PSL Spheres, Polystyrene Latex Beads

Silica Nanoparticles in Di Water

Commercial Monosilicate

Functionalized Silica

Smoke Studies to Visualize Airflow Turbulence

Call Applied Physics, Inc.

1-720-635-3931


Clean Room UltraPure, Nitrogen Fog Generator

An Ultra pure LN2 fogger uses liquid nitrogen and Deionized Water or Water for Injection to create a very dense, ultra pure fog to provide superb visualization of airflow patterns, direction, turbulence, dead zones and velocity for up to 90 minutes in clean rooms, ISO suites, sterile rooms, barrier isolators and medical rooms. Adjustable fog output is provided from 2 to 5 CUBIC METERS per minute of ULTRAPURE FOG with more than 20 feet visualization of turbulence in the airflow and around equipment, as well as 3D airflow modeling. No contamination is created and no clean up of any kind is required after visualizing the airflow.

Nitrogen Fog Generator, UltraPure, Clean Room Fogger, 5 cubic meters per minute - Request a Quote

UltraPure fogger - The Apollo 32 is a nitrogen fog generator for user clean rooms, sterile rooms and ISO suites to provide visualization of airflow, flow patterns, dead spaces and turbulence. Nitrogen fog generators provide a high purity fog to support Pharmaceutical guidelines, USP 797 In-Situ Airflow Analysis, ISO 14644-3 Annex B7 guidelines and semiconductor clean room guidelines

A Nitrogen Fogger uses two sources to produce an ultra pure fog. The process combining the liquid nitrogen and DI water includes boiling the liquid nitrogen and DI water. As the LN2 and DI water boils, the vapor droplets are combined to form the highest purity of fog and highest fog density, which is not matched by any other type of fogger. UltraPure fog provides the greatest visible distance of the airflow turbulence, patterns. The ultrapure fog can easily describe how airflow is balanced in a sterile room or ISO suite. The nitrogen fog generator is sometimes referred to as a smoke machine by facility staff. In fact it does not produce smoke at all, which would be a particulate type of fog. The manner in which the nitrogen fogger produces fog causes DI Water and liquid nitrogen to boil in separate SS dewars. The DI water comes to a boil forming a steam, a water vapor composed of droplets less than 2 microns in diameter. Although DI water is quite clean, there is some remaining residue in the DI water. During the DI Water boil process, any remaining residue in the DI water gets attracted to the SS walls of the DI Water chamber, which is grounded. This helps to provide an ultra pure fog using a typical 16 Meg Ohm Distilled water or WFI water for injection. The water vapor droplets then pass over the Liquid nitrogen dewar, where the liquid nitrogen is boiling at room temperature. The resulting combination of water droplet and nitrogen droplet forms an ultrapure fog droplet at a nominal 3 micron diameter; which creates a very dense, low pressure, ultrapure fog. The high density of ultrapure fog droplets provides the best visualization of the airflow and turbulence, increases the distance at which one can see the airflow and it is the most pure form of fog that can be used in a cleanroom.

An ultrapure, nitrogen fog generator creates a particle free, non-contaminating, high purity fog, leaving no residue behind as the ultra pure fog evaporates back to the air components that we breathe, nitrogen, oxygen and hydrogen. The fog enters the airflow at very low pressure, thus it does not create a turbulence, making the UltraPure nitrogen fogger the best cleanroom fogger suitable for use in Class 1 - 100,000 clean rooms for airflow, turbulence visualization, flow balancing and contaminant transport studies around process tools. This ultra pure fog is typically used to support USP 797 In-Situ Airflow Analysis in Pharmaceutical sterile rooms, barrier isolators and ISO 1-9 suites.

Watch video of the UltraPure Cleanroom Fogger
Apollo32 nitrogen fog generator
Ultrapure Fog Generator, adjustable 2-5 cubic meters / minute for up to 90 minutes, more then 20 feet visible airflow

Performance of the Apollo 32 Cleanroom Ultrapure Fogger- Request a Quote

  Apollo 32, AP32 Cleanroom Ultrapure Fogger
FOG Duration up to 90 minutes
FOG Volume adjustable from 2-5 cubic meters per minute
Total FOG Volume 450 cubic meters of ultrapure fog up to 90 minute operation cycle
Visible Fog Distances more then 20 feet
FOG Type Ultrapure Fog using LN2 and DI Water, or LN2 and WFI Water
Class of Clean Room Class 1 to 10,000
Compatible Guidelines USP 797 In-Situ Airflow Analysis, ISO 14644-3 Annex B7, Semiconductor Cleanroom
Type of Room Clean Room, Sterile Room, ISO Suite, Medical Room
Water Boiler capacity 5.0 liters
LN2 (LNG) Dewar capacity 32 Liters

Liquid Weight 17.77 kg (39 lb.) LN2 and 4.8 Kg (10.6 lbs) Water
Power Requirements 220 VAC, 50/60 Hz, 10A, 3 Wire
Optional Power 220 VAC, 50/60 Hz, 10A, 4 wire; 100VAC/50Hz is also available
Metric Dimensions, (H x W x D) 1095mm x 540mm x 766mm
US Dimensions, (H x W x D) 42.7 inches x 21.06 inches x 29.9 inches
Full Weight 77 kg (170 lb.)

Ultrapure Fogger Features - Request a Quote

Apollo Fog Curtain
Ultrapure Fog Generator with Fog Curtain
  • Continuous airflow visualization to describe direction, velocity and patterns in airflow
  • Containment transport airflow studies
  • Visualization of unwanted gas emission locations and dead zones
  • Tracking routes of unwanted air flow infiltration into clean rooms
  • No contamination created, no contamination left behind
  • No cleanup of any kind after fog visualization
  • Superb 3D airflow modeling capabilities
  • Very low fog exit pressure, as as not to create turbulence as fog enters airflow
  • Compact, transportable, shipping case
  • Fog stream output and fog rake output
  • For use in sterile rooms, ISO suites and clean rooms
  • High density fog visualization of airflow and turbulence
  • Exhaust and ventilation studies around wafer handling systems
  • Air balance studies in Pharmaceutical suites and clean rooms

Ultrapure Fogger Advantages - Request a Quote

Very dense, Stream Fog
Very dense, Stream Fog
  • Most dense fog by converting 417 ml of liquid per minute to an ultrapure fog
  • Greatest visible airflow distances of 20-30 feet
  • Excellent volume of ultrapure fog at 5 cubic meters per minute
  • Total volume of 450 cubic meters of ultrapure fog per operating cycle
  • Longest operating time of 90 minutes
  • No cleanup is required when using a high purity fog, no contamination to the process
  • No turbulence created as fog enters the airflow
  • Roller castors for easy movement over floor
  • Large, 80mm, 3.15", fog outlet
  • User Friendly display and touch pads
  • Stainless steel contacts the LNG and DI Water for best purity of fog
  • very low fog exit pressure that does not create a disturbance to airflow
  • No metal contamination to fog using Stainless Steel water heater and LNG Dewar
  • Easy DI Water and LN2 (LNG) fill up

* Fog distance measured at 40% humidity and air velocity of 90fpm. Visual fog distance decreases as humidity decreases or as airflow velocity increases.

20-30 feet visible fog distance
20-30 feet visible fog distance

Which Clean Room Fogger or Smoke Generator Is Best For My Applications?

Cleanroom UltraPure Fogger, 5 Cubic Meters per minute for 90 minutes with 20-30 feet visible distance.
  • When high fog purity, high fog volume and long visible airflow is needed
  • To visualizing airflow in large clean rooms, ceiling to floor
  • To fog exit velocity must not create turbulence
  • To needing to do 3D airflow modeling of airflow
  • When needing to do visualize airflow in larger cleanrooms
  • When 90 minutes of high purity fog duration is needed
  • When fog visibility of 20-30 feet distance is required
  • To fog Class 1 to Class 10,000 semiconductor, medical, pharmaceutical clean rooms


* Use Hand Gloves and Face Shield when filling LN2
Use 16M ohm DI water or WFI Pharmaceutical Water
Clean Room Fogger, 9cfm, 60 minutes Operation
  • When budget is lower, basic Fogger OK, minimal output turbulence
  • When 60 minutes of fog duration is useful with quick turnaround
  • When fog visibility for 6-8 feet distance is acceptable
  • When fogging gray areas behind the cleanroom
  • When fogging ≥ Class 10 or above in semiconductor or pharmaceutical clean rooms


CO2 Fogger, Vapor DiH2O Fogger, average 4cfm over 10 minutes
  • When Fogging Hazardous areas, No Electrical Outlet Available
  • When fog visibility for 5-6 feet distance is acceptable
  • When 10 minutes of fog duration is useful
  • When fogging small areas
  • Class 10 or above in semiconductor or pharmaceutical clean rooms
  • When fogging work benches


Portable Fogger, DiH2O Fogger, 3-4cfm
  • When fogger PORTABILITY is a must
  • When fog visibility for 3-4 feet distance is acceptable
  • When 35 minutes of fog duration is useful with quick turnaround
  • When fogging ≥ Class 10 and above in semiconductor and pharmaceutical cleanrooms
  • When fogging "hard to get at" areas
16 Meg ohm DI water is standard, but 64 Meg ohm can be used as well
Do not permit DI Water to go stagnant in the chamber
** Use gloves when handling CO2 ice

Fogger Technology

The three types of foggers manufactured for use in the semiconductor and pharmaceutical industry are described below.

Ultrapure LN2 Fogger: This type of smoke generator or clean room fogger provides the highest volume, density and purity of fog. Purity is created by bringing the water to a high temperature, creating a vapor, while simultaneously using gravity to remove the residual mass from the vapor. This process removes any bacterial agents and residual particulate matter from the vapor. The pure vapor is then passed over an LN2 bath, which naturally boils at room temperature. The water molecules bond with nitrogen molecules, creating a nominal 3um fog droplet. The volume of water and nitrogen molecules that combine is extremely high in quantity, creating a dense, high volume, ultrapure fog output with exit temperatures of about 78 degrees F with an exit pressure of less than 0.5 lbs, so as not to disturb the surrounding airflow. The fog is ultrapure leaving minimal, if any, trace particles behind. It evaporates to its gaseous hydrogen, oxygen and nitrogen components, which are natural to the Cleanroom environment. The high density of the fog increases the duration and travel distance of the fog. This fogger can be used in a Class 1 - 10,000 cleanroom environments of pharmaceutical and semiconductor facilities; such as sterile rooms, hospital rooms, medical rooms and cleanrooms.

DI Water Fogger: This type of fogger has less fog density (less capability to visualize airflow) than the UltraPure Fogger described above, but more density than the CO2 fogger described below. The DI water fog is generated by atomizing DI water into water droplets, which are nominally 3-10um in size. The water droplets may contain residual particulate matter remaining in the DI water, but this would be very trace amounts. If the facility manager operates a class 10 to Class 10000 Clean room, the use of a DI Water Fogger poses no problem. However, Cleanroom Engineers who manage facilities operating at Class 1 to Class 10 performance may desire to use an ultrapure fogger. Although some DI Water foggers are described as ultrapure, unless the DI water is vaporized to remove bacterial agents and residual particulate matter, the fog is not ultrapure. The 3-5lb output pressure of a DI water fogger also distorts the airflow patterns, thus adding to the turbulence. The temperature output is typically less than the surrounding room temperature, thus a fog generated from the atomized water droplets will sink momentarily in a typical 70 degree room temperature.

CO2 Fogger: This type of smoke generator or CO2 Fogger is designed for low volume, non-process critical applications such as bench airflow testing. The fog is created using CO2 ice as the fogging agent. The fog contains elements of the CO2 and the user must determine if the residual CO2 components are acceptable in a process environment operating Class 100 to Class 10,000. The 3-5lb output pressure of a CO2 fogger also distorts the airflow patterns, thus adding to the turbulence. The output starts at about 3cfm and slowly decreases to 0 CFM in about 10 - 12 minutes.


Smoke Sticks

Smoke Sticks are used in some Pharmaceutical Clean Rooms around the world. Below is a discussion on the use of smoke sticks used to visualize airflow and turbulence?

A smoke stick is often used visualize airflow turbulence, but smoke sticks are filled with particulates and chemicals. Smoke is created using chemical reactions; thus the smoke is SPUTTERING (sputter) or popping out of the smoke stick in a non-consistent pattern with velocity, but little volume. It is a particle smoke, compared to a visible, pure water based fog, thus smoke sticks are a contaminating smoke. The smoke stick generates an inconsistent flow or pattern of smoke, but it is low cost, which is why some managers allow use of smoke sticks in their Pharmaceutical clean rooms.

Compare a smoke stick to a Clean Room Fogger or an UltraPure LN2 fogger, both which produce a constant volume of fog with a consistent fog output and pure fog. Di Water foggers produce a consistent flow of visible water vapor, which enters the airflow to visualize the airflow patterns and turbulence, then begins to evaporate, returning back to the hydrogen, oxygen and nitrogen components that we breathe. No particulate contamination, no chemical contamination. Water based foggers produce a constant volume of fog at a constant rate, which provides consistent visualization of airflow patterns and turbulence. The Smoke Stick has to be waved around to see what kind of airflow pattern there is, while a Di Water fogger is simply placed in position and produces a flow of fog that can be directed 360 degrees to easily describe the airflow patterns and turbulence. In addition, tubes are now available to create "fog curtains", or a wall of fog, which smoke sticks can not produce.

How many smoke sticks are used per smoke cycle? How much labor is needed to clean up after smoke stick use. Do you need to Clean all the walls where the smoke stick was used. How did the chemical particulates and particles affect the process area? These are critical questions for a pharmaceutical manager. Did the contaminating particles and chemicals get into the drug process?

How much labor is used to cleanup after smoke stick use and if the cleanup did not get every chemical particle, then some smoke chemical material is added to the Pharma process or trapped in a filter somewhere, until it escapes into the Pharma process. That is a quality control issue for that company using smoke sticks.

The low labor cost of using smoke sticks is the reason facility managers may use smoke sticks, but are the chemical and particulate effects to the pharma process being analyzed? Non-contaminating fog does not emit particulates, requires less labor and does not contribute any unwanted chemicals to the Pharma process. A Di Water Fogger provides these advantages in fog volume, fog consistency and fog purity, which easily outweighs the low cost of smoke sticks, the high cost of labor for cleanup and the detrimental affects to quality control!

Smoke Sticks - quality side of the drug product: The smoke chemicals are not of the same chemistry as the drug product, thus smoke chemicals and particulates could migrate into the drug process. There is no guarantee the cleaning process removed all the unwanted particulates and chemicals, from for example, a glove box or isolation box. The chemicals and particulates eventually migrate to the air filter system, which is not 100% effective. If this is the case, the quality and purity of the drug process is affected. Drug quality is the basis of product credibility, which is a valuable asset in customer relations.

Smoke Sticks - labor side of the drug product: The smoke is generated by a chemical reaction, which causes the smoke to sputter into the environment. The smoke is inconsistent in volume, thus the smoke stick is unpredictable for airflow visualization. The chemicals migrate to equipment and walls, which then must be cleaned, and requires an added labor cost. The use of Smoke sticks generates an inefficient smoke, not a consistent fog.

A Di Water Fogger produces a water (H2O) droplet that evaporates back into hydrogen and oxygen, the air we breathe. No clean up is required, at all. No additional time delays and clean up labor is not required. The fog is consistent in volume and constant in output to describe the airflow patterns and turbulence. These are equipment, quality and application concerns to consider when the need for airflow visualization is considered.